• Kinza Babylon Staked BTCKinza Babylon Staked BTC(KBTC)$83,270.000.00%
  • Steakhouse EURCV Morpho VaultSteakhouse EURCV Morpho Vault(STEAKEURCV)$0.000000-100.00%
  • Stride Staked InjectiveStride Staked Injective(STINJ)$16.51-4.18%
  • Vested XORVested XOR(VXOR)$3,404.231,000.00%
  • FibSwap DEXFibSwap DEX(FIBO)$0.0084659.90%
  • ICPanda DAOICPanda DAO(PANDA)$0.003106-39.39%
  • TruFin Staked APTTruFin Staked APT(TRUAPT)$8.020.00%
  • bitcoinBitcoin(BTC)$104,391.001.12%
  • ethereumEthereum(ETH)$2,505.400.89%
  • VNST StablecoinVNST Stablecoin(VNST)$0.0000400.67%
  • tetherTether(USDT)$1.000.01%
  • rippleXRP(XRP)$2.37-1.60%
  • binancecoinBNB(BNB)$652.41-0.04%
  • solanaSolana(SOL)$172.640.26%
  • Wrapped SOLWrapped SOL(SOL)$143.66-2.32%
  • usd-coinUSDC(USDC)$1.00-0.01%
  • dogecoinDogecoin(DOGE)$0.231070-1.20%
  • cardanoCardano(ADA)$0.81-0.10%
  • tronTRON(TRX)$0.2649571.61%
  • staked-etherLido Staked Ether(STETH)$2,505.941.02%
  • wrapped-bitcoinWrapped Bitcoin(WBTC)$104,502.001.27%
  • SuiSui(SUI)$4.010.37%
  • Gaj FinanceGaj Finance(GAJ)$0.0059271.46%
  • Content BitcoinContent Bitcoin(CTB)$24.482.55%
  • USD OneUSD One(USD1)$1.000.11%
  • chainlinkChainlink(LINK)$16.971.27%
  • Wrapped stETHWrapped stETH(WSTETH)$3,016.981.05%
  • avalanche-2Avalanche(AVAX)$24.761.06%
  • UGOLD Inc.UGOLD Inc.(UGOLD)$3,042.460.08%
  • stellarStellar(XLM)$0.3076310.88%
  • ParkcoinParkcoin(KPK)$1.101.76%
  • shiba-inuShiba Inu(SHIB)$0.0000160.30%
  • hedera-hashgraphHedera(HBAR)$0.205083-3.32%
  • ToncoinToncoin(TON)$3.37-0.06%
  • HyperliquidHyperliquid(HYPE)$24.64-2.73%
  • bitcoin-cashBitcoin Cash(BCH)$410.52-2.10%
  • USDSUSDS(USDS)$1.00-0.02%
  • polkadotPolkadot(DOT)$5.110.93%
  • leo-tokenLEO Token(LEO)$8.37-2.09%
  • Pi NetworkPi Network(PI)$1.0946.95%
  • litecoinLitecoin(LTC)$100.26-2.80%
  • wethWETH(WETH)$2,507.580.98%
  • Yay StakeStone EtherYay StakeStone Ether(YAYSTONE)$2,671.07-2.84%
  • moneroMonero(XMR)$336.534.68%
  • Pundi AIFXPundi AIFX(PUNDIAI)$16.000.00%
  • PengPeng(PENG)$0.60-13.59%
  • Wrapped eETHWrapped eETH(WEETH)$2,673.710.86%
  • Bitget TokenBitget Token(BGB)$4.870.57%
  • PepePepe(PEPE)$0.0000132.35%
  • Binance Bridged USDT (BNB Smart Chain)Binance Bridged USDT (BNB Smart Chain)(BSC-USD)$1.000.09%
TradePoint.io
  • Main
  • AI & Technology
  • Stock Charts
  • Market & News
  • Business
  • Finance Tips
  • Trade Tube
  • Blog
  • Shop
No Result
View All Result
TradePoint.io
No Result
View All Result

Redefining Single-Channel Speech Enhancement: The xLSTM-SENet Approach

January 15, 2025
in AI & Technology
Reading Time: 6 mins read
A A
Redefining Single-Channel Speech Enhancement: The xLSTM-SENet Approach
ShareShareShareShareShare

YOU MAY ALSO LIKE

Samsung has begun taking pre-orders for its 500Hz OLED gaming monitor

How to use Gemini to generate unique backgrounds in Google Meet

Speech processing systems often struggle to deliver clear audio in noisy environments. This challenge impacts applications such as hearing aids, automatic speech recognition (ASR), and speaker verification. Conventional single-channel speech enhancement (SE) systems use neural network architectures like LSTMs, CNNs, and GANs, but they are not without limitations. For instance, attention-based models such as Conformers, while powerful, require extensive computational resources and large datasets, which can be impractical for certain applications. These constraints highlight the need for scalable and efficient alternatives.

Introducing xLSTM-SENet

To address these challenges, researchers from Aalborg University and Oticon A/S developed xLSTM-SENet, the first xLSTM-based single-channel SE system. This system builds on the Extended Long Short-Term Memory (xLSTM) architecture, which refines traditional LSTM models by introducing exponential gating and matrix memory. These enhancements resolve some of the limitations of standard LSTMs, such as restricted storage capacity and limited parallelizability. By integrating xLSTM into the MP-SENet framework, the new system can effectively process both magnitude and phase spectra, offering a streamlined approach to speech enhancement.

Technical Overview and Advantages

xLSTM-SENet is designed with a time-frequency (TF) domain encoder-decoder structure. At its core are TF-xLSTM blocks, which use mLSTM layers to capture both temporal and frequency dependencies. Unlike traditional LSTMs, mLSTMs employ exponential gating for more precise storage control and a matrix-based memory design for increased capacity. The bidirectional architecture further enhances the model’s ability to utilize contextual information from both past and future frames. Additionally, the system includes specialized decoders for magnitude and phase spectra, which contribute to improved speech quality and intelligibility. These innovations make xLSTM-SENet efficient and suitable for devices with constrained computational resources.

Performance and Findings

Evaluations using the VoiceBank+DEMAND dataset highlight the effectiveness of xLSTM-SENet. The system achieves results comparable to or better than state-of-the-art models such as SEMamba and MP-SENet. For example, it recorded a Perceptual Evaluation of Speech Quality (PESQ) score of 3.48 and a Short-Time Objective Intelligibility (STOI) of 0.96. Additionally, composite metrics like CSIG, CBAK, and COVL showed notable improvements. Ablation studies underscored the importance of features like exponential gating and bidirectionality in enhancing performance. While the system requires longer training times than some attention-based models, its overall performance demonstrates its value.

Conclusion

xLSTM-SENet offers a thoughtful response to the challenges in single-channel speech enhancement. By leveraging the capabilities of the xLSTM architecture, the system balances scalability and efficiency with robust performance. This work not only advances the state of speech enhancement technology but also opens doors for its application in real-world scenarios, such as hearing aids and speech recognition systems. As these techniques continue to evolve, they promise to make high-quality speech processing more accessible and practical for diverse needs.


Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 65k+ ML SubReddit.

🚨 Recommend Open-Source Platform: Parlant is a framework that transforms how AI agents make decisions in customer-facing scenarios. (Promoted)


Nikhil is an intern consultant at Marktechpost. He is pursuing an integrated dual degree in Materials at the Indian Institute of Technology, Kharagpur. Nikhil is an AI/ML enthusiast who is always researching applications in fields like biomaterials and biomedical science. With a strong background in Material Science, he is exploring new advancements and creating opportunities to contribute.

📄 Meet ‘Height’:The only autonomous project management tool (Sponsored)

Credit: Source link

ShareTweetSendSharePin

Related Posts

Samsung has begun taking pre-orders for its 500Hz OLED gaming monitor
AI & Technology

Samsung has begun taking pre-orders for its 500Hz OLED gaming monitor

May 11, 2025
How to use Gemini to generate unique backgrounds in Google Meet
AI & Technology

How to use Gemini to generate unique backgrounds in Google Meet

May 11, 2025
Dream 7B: How Diffusion-Based Reasoning Models Are Reshaping AI
AI & Technology

Dream 7B: How Diffusion-Based Reasoning Models Are Reshaping AI

May 11, 2025
FTC pushes the enforcement of its ‘click-to-cancel’ rule back to July
AI & Technology

FTC pushes the enforcement of its ‘click-to-cancel’ rule back to July

May 10, 2025
Next Post
Ohio State vs. Notre Dame: 10 most impactful players in College Football Playoff National Championship – CBS Sports

Ohio State vs. Notre Dame: 10 most impactful players in College Football Playoff National Championship - CBS Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Search

No Result
View All Result
A look at the history of presidents defying the courts

A look at the history of presidents defying the courts

May 7, 2025
What to know about Greg Abel, the CEO Berkshire Hathaway's board voted unanimously to replace Warren Buffett – Business Insider

What to know about Greg Abel, the CEO Berkshire Hathaway's board voted unanimously to replace Warren Buffett – Business Insider

May 5, 2025
LinkedIn wants you to tell its AI about your dream job

LinkedIn wants you to tell its AI about your dream job

May 7, 2025

About

Learn more

Our Services

Legal

Privacy Policy

Terms of Use

Bloggers

Learn more

Article Links

Contact

Advertise

Ask us anything

©2020- TradePoint.io - All rights reserved!

Tradepoint.io, being just a publishing and technology platform, is not a registered broker-dealer or investment adviser. So we do not provide investment advice. Rather, brokerage services are provided to clients of Tradepoint.io by independent SEC-registered broker-dealers and members of FINRA/SIPC. Every form of investing carries some risk and past performance is not a guarantee of future results. “Tradepoint.io“, “Instant Investing” and “My Trading Tools” are registered trademarks of Apperbuild, LLC.

This website is operated by Apperbuild, LLC. We have no link to any brokerage firm and we do not provide investment advice. Every information and resource we provide is solely for the education of our readers. © 2020 Apperbuild, LLC. All rights reserved.

No Result
View All Result
  • Main
  • AI & Technology
  • Stock Charts
  • Market & News
  • Business
  • Finance Tips
  • Trade Tube
  • Blog
  • Shop

© 2023 - TradePoint.io - All Rights Reserved!